目的研究刺五加(Acanthopanax senticosus Harms)的化学成分及其抑制蛋白酪氨酸磷酸酶1B(PTP1B)活性。方法利用生物活性导向分离方法分离得到具有蛋白酪氨酸磷酸酶1B抑制活性的贝壳杉烷型二萜类化合物。结果9个化合物分别鉴定为17-isobutyryloxy-16αH-kauran-19-oic acid(1),17-hydroxy-16αH-kauran-19-oic acid(2),17-acetoxy-18-isobutyryloxy-16αH-kauran-19-oic acid(3),ent-kaur-16-en-19-oic acid(4),ent-kaur-16-en-19-oic acid(kaurenoic acid(5),4-epirulopezol(6),16α-hydroxy-ent-kauran-19-oic acid(7),16αH,17-isovaleryloxy-ent-kauran-19-oic acid(8)和16α-hydroxy-17-isovaleryloxyent-kauran-19-oic acid(9)。结论化合物1~3、5和6为首次从该植物中分离得到。化合物1、3~6和8,对PTP1B活性具有抑制作用,其IC50值在(5.6±0.8)到(22.8±1.2)μmol·L-1之间。
Abstract
OBJECTIVE To study the constituents isolated from Acanthopanax senticosus Harms and their inhibitory activity on protein tyrosine phosphatase 1B(PTP1B). METHODS Kaurane-type diterpenes with PTP1B inhibitory activity were obtained by bioassay-guided fractionation. RESULTS Nine compounds were identified as 17-isobutyryloxy-16αH-kauran-19-oic acid(1),17-hydroxy-16αH-kauran-19-oic acid(2),17-acetoxy-18-isobutyryloxy-16αH-kauran-19-oic acid(3),ent-kaur-16-en-19-oic acid(4),ent-kaur-16-en-19-oic acid(kaurenoic acid 5),4-epirulopezol(6),16α-hydroxy-ent-kauran-19-oic acid(7),16αH,17-isovaleryloxy-ent-kauran-19-oic acid(8) and 16α-hydroxy-17-isovaleryloxyent-kauran-19-oic acid(9). CONCLUSION Compounds 1-3,5 and 6 are obtained from the plant for the first time. Compounds 1,3-6 and 8 exhibite inhibitory effects on PTP1B with IC50 values ranging from (5.6±0.8) to (22.8±1.2) μmol·L-1.
关键词
刺五加 /
蛋白酪氨酸磷酸酯酶1B /
贝壳杉烷型二萜类化合物 /
2型糖尿病
{{custom_keyword}} /
Key words
Acanthopanax senticosus Harms /
PTP1B /
kaurane-type diterpenes /
type 2 diabetes
{{custom_keyword}} /
中图分类号:
R284
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CUI L,NA M K,OH H C,et al. Protein tyrosine phosphatase1B inhibitors from Morus root bark. Bio Med Chem Lett,2006,16(5):1426-1429.[2] MURAKAMI T,ISA T. Eine neuuntersuchung derinhaltsstoffe von Siegesbeckia pubescens Makino . Tetrahedron Lett,1973,14(50):4991-4994.[3] ETSE J T,GRAY A I,WATERMAN P G. Chemistry in the Annonaceae,XXIV. Kaurane and kaur-16-ene diterpenes from the stem bark of Annona reticulate. J Nat Prod,1987,50(5):979-983.[4] GUO D A,ZHANG Z G,YE G Q,et al. Studies on liposoluble constituents from the aerial parts of Siegesbeckia orientalis L . Acta Pharmacol Sin(中国药理学报),1997,32(4):282-285.[5] CHOUDHURY M H,TERENCE M H,PETER G W. Kolavane and kaurane diterpenes from the stem bark of Xylopia aethiopica . Phytochem,1982,21(6):1365-1368.[6] JUNG H A,LEE E J,KIM J S,et al. Cholinesterase and BACE1 inhibitory diterpenoids from Aralia cordata . Arch Pharm Res, 2009,32(10):1399-1408.[7] TOSHIKO S,TAKAO M,YASUHISA S,et al. Chemical and Chemotaxonomical studies on filices. Ll. Chemical studies on the constituents of Costa Rican Ferns. Chem Pharm Bull,1984,32(11):4620-4624.[8] KIM Y H,KIM H S,LEE S W,et al. Kaurane dericatives from Acanthopanax koreanum. Phytochem,1995,39(2):449-451.[9] ZHANG Y M,YANG J S,XU X D. A new kaurane derivative from Aralia fargesii. Chin Chem Lett (中国化学快报),1999,10(8):673-674.[10] NA M,YANG S,HE L,et al. Inhibition of protein tyrosine phosphatase 1B by ursane-type triterpenes isolated from Symplocos paniculata. Planta Med,2006,72(3):261-263.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
吉林省科技发展计划资助项目(YYZX201240)
{{custom_fund}}